First of all, You have to Learn a Programming language Completely. The Language can be C++ or Python.
The International Collegiate Programming Contest (ICPC) covers various algorithms and problem-solving techniques. To prepare for ICPC, you should have a strong understanding of fundamental algorithms and data structures. Here's a list of crucial algorithms and topics that are commonly encountered in ICPC contests:
Sorting Algorithms:
Searching Algorithms:
- Binary Search
- Hashing (e.g., using hash tables)
Data Structures:
- Arrays
- Linked Lists
- Stacks
- Queues
- Heaps (Binary Heap, Priority Queue)
- Hash Tables
- Trees (Binary Trees, Binary Search Trees, AVL Trees, Segment Trees)
Graph Algorithms:
- Breadth-First Search (BFS)
- Depth-First Search (DFS)
- Dijkstra's Algorithm (shortest path)
- Bellman-Ford Algorithm (shortest path with negative weights)
- Kruskal's Algorithm (minimum spanning tree)
- Prim's Algorithm (minimum spanning tree)
- Floyd-Warshall Algorithm (all-pairs shortest paths)
Dynamic Programming:
- Understanding the concept of dynamic programming
- Memoization and Tabulation techniques
- Examples: Fibonacci sequence, Coin Change, Longest Common Subsequence, Knapsack
Greedy Algorithms:
- Understanding greedy-choice property
- Examples: Huffman coding, Minimum Spanning Tree algorithms
String Algorithms:
- String manipulation (substring search, reversing, etc.)
- Pattern matching (e.g., KMP algorithm)
- Longest Common Substring/Prefix
- Tries (prefix trees)
Number Theory:
- Prime numbers (primality testing, Sieve of Eratosthenes)
- Modular arithmetic
- Greatest Common Divisor (GCD)
- Least Common Multiple (LCM)
Combinatorics:
- Permutations and Combinations
- Probability and Expectation
Geometry:
- Basic geometric algorithms (distance calculation, convex hull)
- Line sweep algorithm
Bit Manipulation:
- Bitwise operators (AND, OR, XOR)
- Bit counting (Hamming weight)
- Bit manipulation tricks (e.g., finding the rightmost set bit)
- Advanced Topics (may be encountered in more challenging ICPC problems)
- Graph theory (advanced graph algorithms, network flows)
- Advanced dynamic programming (matrix exponentiation, bitmask DP)
- Computational geometry (Voronoi diagrams, intersection algorithms).